Cubic Spline Coalescence Fractal Interpolation through Moments
نویسندگان
چکیده
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated function system. The convergence results and effects of hidden variables are discussed for cubic spline CHFIFs.
منابع مشابه
Spline Coalescence Hidden Variable Fractal Interpolation Functions
This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (198...
متن کاملGeneralized Cubic Spline Fractal Interpolation Functions
We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by prescribing any combination of r values of the derivatives f (k), k = 1, 2, . . . , r, at boundary points of the interval I = [x0, xN ]. Our approach to construction settles several questions of Barnsley and Harrington [J. Approx Theory, 57 (1989), pp. 14–34] when construction is not restricted to prescribing the values ...
متن کاملSmooth Fractal Interpolation
Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any s...
متن کاملPiecewise cubic interpolation of fuzzy data based on B-spline basis functions
In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...
متن کاملOn a Generalization of Cubic Spline Interpolation
Based on analysis of basic cubic spline interpolation, the clamped cubic spline interpolation is generalized in this paper. The methods are presented on the condition that the first derivative and second derivative of arbitrary node are given. The Clamped spline and Curvature-adjusted cubic spline are also generalized. The methods are presented on the condition that the first derivatives of arb...
متن کامل